

Getting Light tO Work - GLOW

Principles of Photonics

QUICKER with Light – QUality In Creative Kinetic Experience Resonating with Light					
1.1	Observations in Light to reveal SEEING Solutions				
1.2	Investigations in Light to reveal Empirical Evidence				
1.3	Measurements in Light to reveal Precision Accuracy				
1.4	Designing in Light to reveal Imaginative Ingenuity				
1.5	Testing in Light to reveal Quality of Reliability				
1.6	Reporting in Light to reveal Clarity of Insight				
1.7	Presenting in Light to reveal Communication Competence				

Linking Light With Yare Design Development Opportunities - LLWYDDO

Academi Ffotoneg Cymru @ Bangor Photonics Academy of Wales @ Bangor (PAWB)

Photonics is the Science of the Harnessing of Light

1.1.1 It is possible to make an OBSERVATION – but to SEE at different Levels of SEEING

Making Observations - but what level of SEEING is involved?

"Oh – I **See** what you mean" is certainly a very frequent response, during an exchange of some information which perhaps does not prompt an immediately obvious level of comprehension when that particular information is first encountered.

Having the opportunity of **Seeing** some form of Information is often a crucially important input factor in the transition of that Information into becoming some form of personal knowledge or memory capable of being retrieved at some stage.

The ability to **See** requires an appropriate Light Sensor / Detector, which, in turn, needs to be tuned to the appropriate resonant and range of "Frequency" levels which are compatible with the format of the incoming Observation Information.

The ability to See is a personal skill which, like all skills, can be acquired at various Levels of personal ability and proficiency.

Observations require some level of Involvement in Seeing by an Observer, with several different Levels being possible.

PAWB identifies at least 7 different Potential Levels of Seeing Involvements, when Observations are in progress.

Seven Potential Levels of Seeing Involvements when Observing

- Level 0 = Missing the entire content of the available Observation Information quite a normal, and easy, reality !
- Level 1 = Watching, but non-registering of any of the available Observation Information for future use.
- Level 2 = Witnessing but no direct involvement in producing, or creating, any of the available Observed Information.
- Level 3 = Viewing with some critical analysis of the available Observation Information beginning to happen.
- Level 4 = Monitoring with some data recording measurement interest in some of the available Observation Information.
- Level 5 = **Noticing** with an emphasis on an awareness of specific fine detail in the **available Observation Information**.
- Level 6 = **Perceiving** with an imaginative vision of some future Ingenuity to create "What might be achieved" with the available Observation Information.

Perception is derived from the Latin verb "Percipere" – meaning "to seize" – which is significant !

1.1.3 QUICKER with Light – QUality In Creative Kinetic Experience Resonant with Light

Observation of Light based Photonics Solutions

- 1 "Natural Ability" versus the **DISCIPLINE of Acquired Ability**.
- 2 The DISCIPLINE of Seeing Photonics Solutions at the Level of Perception Seeing.
- 3 Imagination of the potential variety of the **100+ new Inventions** prompted by the **Photonics Solutions**.
- 4 Utilization of **New Solution Observations** at **the very instant** of **Seeing the New Solution Information**.
- 5 Individual Personality Imprint imposed on the New Invention the Insight and Ingenuity Input.
- 6 **Fundamental Challenge** for the Creation of **New Inventions** which arise from **New Information**.
- 7 Importance of **Divergent Thinking** to produce more than one **New Application Output**.
- 8 Versatility demonstrated by **Personality Input** and **Prototype Design Output**.

Investigations of Light based Photonics Solutions

- **1 Investigations** based on the **DISCIPLINE** of **Perception Level Seeing Observations of Solutions**.
- 2 **Prediction of Empirical Outcomes** based on earlier, or predicted, theoretical ideas.
- 3 Acquisition of **Empirical Evidence**.
- 4 **Pre-eminence of Empirical Evidence** as the only priority.
- 5 Empirical Evidence must be **repeatable** and **consistently repeatable** multi-acquisition.
- 6 The **Output Effect** needs to be confirmed as being the **real Input Cause**.

Scientific Measurements

- 1 Based on the **DISCIPLINE** of **Investigation of Solutions**.
- 2 Acquisition of Specific, Precise, Accurate and Useful Empirical Evidence Importance of knowing:-
 - 2.1 The Range of Measurements to be Investigated.
 - 2.2 How to achieve Measurements.
 - 2.3 How to Record Measurements.
 - 2.4 How to Interpret Measurements.
 - 2.5 How to recognize the **Implications of Measurements**.
 - 2.6 How to **Utilize Measurements** in the Design Specification.

Design Specification and Engineering Construction

- **Based on Empirical Evidence** acquired from the Measurement from the Investigation of Solutions.
- 2 Precise **Purpose of proposed Design** for the Photonics Prototype.
- 3 Flow Diagrams.
- 4 Model Making.
- 5 Prototype **Design Construction**.
- 6 Prototype **Design Test Procedures.**
- 7 Test based **Modifications.**

1.1.4 Low Power LASER, LED, and Optical Component Observations – high Levels of SEEING

Inherent LASER / LED Beam Chara	icteristics – All Pot	tential Solutions t	o new Application	is of Light	
Luminous Intensity	Source / Surface Divergence	Brightness Convergence	Fluence (Jm ⁻²) Single Photon	Distribution Multi Photon	Photometry Units
Quantum Approach	Hertz (1887) PE Millikan e and PE – Ν Feynman QED Phasor Vector ψ ² = Photon Probabil	Planck (1900) lobel (1923) 1 Photon f(x ₁ ,t) ~ Wa Photon Amplitude lity	Einstein Quanta (190) de Broglie Duality ve Approach Transverse E and B Wave Function Collap	5) – Nobel (1921) Momentum, p = h/λ 2 Photons f(x ₁ .x ₂ ,t) ~ Wave Function ψ ose	Energy E = hv = hc/λ Particle Approach Maxwell Wave Equ.
Wavelength	Frequency	Colour	Resonant Cavity	Quantum Photon	Photon Phase
Photon Velocity	Vacuum Polarization	Material Dispersion	Refractive Index Polariton	Dispersion Soliton	Birefringence
Coherence	Phase Interference	Frequency Diffraction	Polarization Phase Difference ~ Pa	Spatial / Temporal Co ath Difference	herence Holography
Polarization	Linear Photon Velocity	Circular Interference	Elliptical Crystal Structures	Birefringence Equal Thickness Color	Optic Axis urs

Applied LASER / LED Beam Treatments – All Potential Solutions to new Applications of Light					
Pulsed Modulation	Amplitude Astable	Frequency Monostable	Pulse Width Modula 3 Signals in a Pulse	tion Bounce Signals	Ambient Light
Placement	Optic Fibre	Step / Graded Index	Speckle Effect	Random / Ordered Interference	
Protraction	Rough Surface Tweakability	Mirror Lens Mounts	Spherical Lens Mirror Mounts	Cylindrical Lens Base Board	Beam Steering Beam Height
Polarization	Polarizing Filters Coloured Filters	Intensity Control ¼ Wave Plate	Birefringent Colours ½ Wave Plate	Observable Interfere Sellotape	ence Fringes

LASER / LED Photon Beam Encounters with Orbital Electron Inter-actions - All Potential Innovative Solutions					
Beam Analysis	Photodiode	Optoelectronics	Oscilloscope	Multimeter	LED
Optical Media	Lens	Mirror	Apertures	Diffraction Grating	Filters
Photon / Electron	Photoelectric Effect Boundary Edges	Absorption Diffraction	Scattering Photovoltaic	Surface Colour Transmission	Spectra Polariton
Photon Effects	Photosynthesis Persistence of vision	Phosphorescence	Fluorescence	Luminescence	

1.1.5 Radiometry and Photometry Units

Radiometry – Measurement of the Properties of Radiant Energy				
Quantity	Meaning	Symbol		
Radiant Energy	The total amount of Energy Radiated by a Source.	J		
Radiant Flux	The amount of Energy Radiated by the Source per second	W		
Radiant Intensity	Radiant Flux leaving a point on the Source per unit solid angle	W sr⁻¹		
Irradiance	Radiant Flux incident from all directions on a surface per unit area	W m⁻²		
Radiance	Radiant Flux Emitted ~ Scattered by unit area of a Surface	W m ⁻² sr ⁻¹		
Nadiance	relative to the solid angle subtended by a sensing entrance pupil			
Photometry – Measurement of the Properties of Optical Energy				
Meaning				
Luminous Energy	Depends on the response of the detector (the eye) to different wavelengths	lm.s = talbot		
Luminous Flux	One Lumen is defined as the Luminous Flux of Light produced by a Light Source	lm = lumen		
	that emits 1 Candela of Luminous Intensity over a solid angle of 1 Steradian	1 lm = 1 cd.sr		
	The Candela is the Luminous Intensity, in a given direction, of a Light Source			
Luminous Intensity	that emits monochromatic radiation of frequency 540 x 10 ¹² Hertz which has a	Cd		
	Radiant Intensity in that direction of 1/683 Watt per Steradian.			
Illuminance	Luminous Flux per unit area	1 lm m ⁻² = 1 Lx		
Luminance	Luminous Intensity per unit area	Cd m ⁻²		

1.1.6 Coupling – An Essential and Practical Consideration – a Reprise Section

